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I INTRODUCTION

There are several properties of Laplace’s equation that have important applications. One of these
properties states that if the magnetic field normal to the surface bounding a source-free region of space is zero
everywhere over that surface, then all magnetic field components within the volume are zero [1]. Another
related property states that if both orthogonal components of magnetic field tangent to the bounding surface of a
source-free region are zero everywhere over that surface, then all magnetic field components within the volume
are once again zero [2]. The purpose of this paper is to derive two analogous properties for special types of
magnetic field gradients called “directional derivatives”. Once these properties have been established, the
boundary conditions ensuring uniqueness for gradient solutions inside the volume can be determined.

There are many ways to compute the gradient of a magnetic scalar potential or ficld component. In
general, the gradient of a magnetic scalar potential, ¢, is expressed as Vp, and is equal to the negative of a

magnetic field vector, / . In Cartesian coordinates the potential gradient is expressed as

V¢7—16¢+]a¢ plaa )
x 'y

where i, j, ¥ are unit vectors in the x, v, z directions, respectively. In generalized curvilinear coordinates .

(1) must be modified to account for the curvature of the coordinate system. Inan orthogonal curvilinear system
(OCS), (1) is written as

Vp=8-2 44 90 .5 00 ®
ok, g, hog,

where a,, a,, a, are unit vectors in the direction of generalized coordinates &, &, &, and where h, h,, h,

are the metrics that scale the curvilinear coordinate system under consideration [3]. The rate-of-change in each
component of the vector in (2) is computed along a curved coordinate line while holdmg the other coordinates
constant.

To take the process one step further, the gradient of each component in H could also be computed. In
Cartesian coordinates, the complete gradient of A is given as

~0H_ ~0H,6 »0H

VH, =i—%+j24+f—= 3)
ox oy oz
~0H, +~0H, -0H
VH, =i —2L+ j—L+k—2 (C))
o oy o
VH, =i o, +}'6H’ +I€aH‘ )
ox oy oz -

where H_, H,, H, are the magnetic field components in Cartesian coordinates; while in generalized

coordinates (reference 3, p122, eq. 7.4) the complete gradient would be

. OH, . OH, . -0H,

a, +4, +a, (©)
hog,  “h0g T hoE

VH, =
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\ oH, , . oH,
hog, s h 652 % hy0¢,
344 H, +d, oA, ¢

hog hzaé hs0¢;
where H,, H,, H, are the three components of magnetic field in generalized coordinates. (It should be

noted that, in general, the metrics 4,, &, , h, are themselves functions of &, &,, &,.) As was the case

for the gradient of the magnetic potential, the gradients of the magnetic field vector components in a
generalized coordinate system give the gradient along curved lines defined by the curvilinear coordinate.
This curvilinear gradient is not the boundary condition being considered in this paper.

)

In this paper, magnetic field gradient boundary conditions will refer to the directional derivatives of
the magnetic field vectors. The directional derivatives give the rate-of-change in magnetic field along a

straight line in a specific direction. The directional derivative of the magnetic field vector A in the direction
of a unit vector 4 is given in Cartesian coordinates by [4]

@ V)H =i(a-VH,)+ J(a-VH,)+k(a-VH,) ©)
while, in generalized curvilinear coordinates the expressions are

a OH, +a_25H, +33_aH1
h afi hy, 0¢, by OF,
LLRPRLY
h “ 2, 551
e
Ty, o2, %3

[@-V)H], =

- (10

]

(G-, =a_,é’H2 +g}waH2 +a_3¢'3H2

h 351 h, 352 hy 0%,

Ohy an
hz 353 2,

A, a ————a, _é?fz_,_]
hh, " " 05, o¢,
(G- ], =ﬂaH3 +£7_Z_6H3 +ﬁ6H3

h, 65‘ h, 64‘2 h, 0,
' oh
H g 9
hh ——la, 5{ q f ]
H, oh,

-+ ——
Ik B, 553

12)

)

where a,, a,, a, are the components of 4 in curvilinear coordinates. The objective of this paper is to

determine the magnetic field boundary conditions for directional derivatives that will guarantee all components
of the complete magnetic field gradient are uniquely zero inside the bounded volume.
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II Boundary Conditions for Directional Derivatives in the Surface-Normal Direction

The standard derivation of the magnetic field properties of Laplace’s equation will serve as the bases
for proving the gradient cases. Following the procedure given in [1], applying the divergence theorem to
H VH_gives

[V-(#,VH,)dv = §(H,VH ) hda (13)

N

where da is the differential area on the closed surface, S, that bounds the source-free volume, ¥, having
differential volume dv (see Fig. 1), and 7 is the unit normal vector on the bounding surface that points into the
" volume. However,

V-(H,VH,)=H V*H +VH,-VH, | (14)

Source-Free Volume V

X

Boundary Surfaces

Figure 1. A Source Free Volume, V, bounded by the Surface, S

Since H, =-3¢/ox, then

3 3 3 '
Vsz=-(g—3£+ ;a“; + ai;;) (15)
v x y z
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which becomes

i 2 \_ ' 16
ax(V ;a) 0 ) (16)

since g is a solution to Laplace’s equation. (In general, the order of differentiation in (15) can only be
reversed in Cartesian coordinates.) Therefore, (14) reduces to v ‘(HxVHx)= VH_-VH _, so that (13) can be
written as

[IVH [dv=§H, (3 VH Ya a7
| 4 N
Repeating this procedure for the y and z components gives

vH [ dv=§H (3-VH Va - a8)
) Yy % Y y

and

[[VA.['dv = §H,(3-VH Ya 19)
v S

Adding (17) through (19) together, and rearranging yields

2)jv

= §$H -[(i-V)H lda

VH [ +|VH [ +|vH,
[lor.f+fom,f +

(20)

The term in brackets on the right side of (20) is the directional derivative of H in the direction that is
normal to the bounding surface.

If all the compoﬁents of the directional derivative in the direction normal to the surface are zero, then
the right side of (20) is zero. Therefore, the integrand on the left side is also equal to zero. This means that all

the magnetic field gradient components (i.e. the complete gradient of H ) are zero inside the voluime.

It would appear at first glance that the zero requirements for all components of the directional
derivative in the direction normal to the surface applies only to magnetic field vectors expressed in Cartesian

coordinates. However, the result is more general. If H is expressed as
H=hH,+tH, +t,H, 21

where 7, and #, are unit vectors in the two orthogonal directions tangent to the surface (Fig. 1), then from (10)
through (12), the three components of the directional derivatives in the normal direction (D,,, D:,n , Dan ) are
given by

1 0H, H, oh, H, oh
D =— + +
hn agn hnhtl 65‘1 hnhtz a§t2

22)
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_10H, H, oh, @3)
wm 7 -
v h, 05, hh 0F
ziaHlz 3 H, oOh 24)
" 'hn aén hnhtz a§t2
where h_, h,» h, are the metrics for the surface-normal and two orthogonal tangential directions,
respectively. Therefore, forcing D,, = D,, = D, , = 0 ensures (- V)H =0 in (20),
When examining (20), it becomes clear that the requirement for all three components of the
directional derivatives to be zero may, in some cases, be too rigid. Expanding the integrand on the left side of
(20) gives
2
VH,[ +|VH,| +|VH.[ = H. + HZ + H.
+H, +H. +H,, | (25)

2 2 2
+Hu+sz+H”

However, since H, =H_, H, =H,, and H_=—(H, +H,), it needs only be shown that
|VH,[2 + IVHyl2 =0 to prove that the complete gradient inside the volume is zero. In fact, setting any two of

the three terms on the left side of (25) to zero is sufficient for the complete gradient to be zero; which implies
that in Cartesian coordinates only two of the three gradient boundary conditions are required. There are other
coordinate systems in which only two of the three components of the normal directional derivatives are
required. Therefore, the general boundary condition specifying all three components of the directional
derivatives in the surface-normal direction is a sufficient condition, but not a necessary one.

Equation (20) can now be used to prove the uniqueness of solutions to Laplace’s equations for field
gradient boundary conditions. Assume there are two possible solutions to Laplace’s equations for field

gradients inside the volume V, H, and H,. Let H* = H, - H, , so that (#-V)H, —(71-V)H, = 0 on the
bounding surface. (It is a requirement that both solutions satisfy the same boundary conditions on the
enclosing surface.) Therefore, since (7-V)H? =0, |VH 4 Iz + IVH o IZ + |VH 4 |2 = 0 inside the volume. This

implies that the complete gradients of 7, and H, are equal in this region, proving uniqueness of the solution.

IIT Boundary Conditions for Directional Derivatives .
in the Surface-Tangential Directions

The standard derivation of the tangential magnetic field boundary conditions for Laplace’s equation
will serve as the bases for proving the gradient cases. Following the procedure given in [2], the vector analogue
of Green’s first identity is

I(V*I_’_-ng—]_’_-Vx ng)iv
i (26)
=§(I—’-xVx§)-ﬁda
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where as before S is a closed surface around the volume V. Let VH_=VxP*=Vx(Q* (which implies
VxVxQ"=0), where P* and Q* are givenby P* = 4,P* + 4P} + 4,P; and 0 = 4,0 + 5,0; + &,0; -

(The vector P~ is-shown to exist and is defined in the appendix for Cartesian coordinates.) Rearranging the
right side of (26) gives ’

j VH,

vV

“dv=§P*-(VH, xA)a @7)
S

Substituting /i = f, x £, in (27) and using a vector identity from [4] gives

[\ve,fav=§P*[G,-vE, )i~ (- VA, )| da (28)
14 N

Repeating this procedure for the y and z components gives

(v fav=§B [, -v,)7 - v )2 ) o9
and " ’
[\va [ av=P* [,-vA,), - (,- VA, )7, da o 00)
v S

The terms inside the brackets on the right side of (28) through (30) are the directional derivatives of
H,, H,, H_ in the two orthogonal directions tangent to the bounding surface. If these six directional

“derivatives are all zero, then the complete gradient within the volume is also zero.

Once again it can be shown that the directional derivative boundary conditions apply to curvilinear
coordinate systems. The six tangential directional derivative boundary conditions from (28) through (30) can
be written as

(’:1 'V)ﬁ

afn Al e ' 3D

=i(6,-vH, )+ jG, -vH )+ kG, -vH,)

¢ -v)F
afn nfn nfn (32)
=i, -vH )+ jG,-vH )+ £G,-VH,)
Once again, if H is expressed as in (21), then from (10) through (12), the six components of the
directional derivatives in the tangential direction ( D,.D,,» D% .D,, > D&h R ]Dlz,2 ) are given by
— 1 aEln H‘l ahfl (33)
ny T 7 -
l htl aftl hnhtl agn

1 0H, H, oh H, o, -

it = h_tl 5511 htlhtz agtz .h‘nhtl aén
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1 aH H ah
D, = (35)
" h, 56, h,,h,z 56,2
H, on -
D, =~ 2 T (36)
" h, 06, hh, O,
1 6H, H, oh
ot 37
i h o¢, h h 65,
- 1 0H,z N H, 6h,2 N H,l 6h,2 38)
¥ htz 65,2 hnh,l o0&, h,lh,z 65,1
where all the terms have been defined previously. Therefore, if D, =D, = D,.=D, =D, =D, =0, then

G-VH =(,-V)H =0.

Using the same arguments as for the surface-normal directional derivatives, it can be shown that all
six components are not required for a Cartesian system, as is the case in some curvilinear coordinate systems.
Therefore, the requirement that all six tangential directional derivatives be zero is a sufficient condition and not
a necessary one. In addition, these six directional derivatives are sufficient to guarantee a unique complete
gradient solution to Laplace’s equation.

IV CONCLUSION

Specifying the three magnetic field directional derivatives in the normal direction over a closed surface
around a source-free volume is a sufficient, but not necessary, condition to ensure a unique total field-gradient
solution to Laplace’s equation. Similarly, specifying the six magnetic field directional derivatives in the two
orthogonal tangential directions over a closed surface around a source-free volume is also a sufficient, but not
necessary, condition to ensure a unique total field-gradient solution to Laplace’s equation. Although the proofs
in this paper were conducted specifically for magnetic fields, the directional derivative boundary conditions
should apply to any field-gradient boundary value problem in physics. In addition, it may be possible to use
this theory to develop finite element techniques that use directional derivatives as input to boundary value
problems and compute unique solutions for the complete gradient inside a volume.
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APPENDIX

In this appendix it will be shown that a vector P* can be found such that VA, = Vx P*. The

magnetic field H can be represented as the curl of a vector potential A (H=Vx4 ) and can be written in
Cartesian coordinates as

Oy O G A1

Y T2 s oy

where A4_, A,, A, are the components of A . From (Al), the expression for VH_ is

0*4 ~ 0% 2A
Vi, =i Ty, 5 T4 4, .
dyox  ozox o Gz0y (A2)
~ 24 04
+k(.ai___7y)
e &
Next, Vx P* is given by
Y A AN A
VxP*= ( )+ j( =)
ay oz 0z ox (A3)
oP; _op; -
+h(=2 o =)
oy

Equating like components between (A2) and (A3)v gives the three equations

oP; OP; 4, 0’4,
& oz oyox deox
OP; OPF _3°4, O°4, (A5)
&z o oy*  0zdy
i (46)
& oy ayaz B

(Ad)

From (A4) it is clear that P; and P can be represented as

Fy==> | (A7)
=2 @y

since the order of differentiation can be changed in Cartesian coordinates. What remains is to show that the
selection of Py and P in (A7) and (A8) are consistent with (AS5) and (A6). Placing (A8) into (A5) and taking

the partial derivative with respect to y gives
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2 px 2 2 53A
0K 004 04y 94, | (A9)
or oy o o oyer

However, H _ is also a solution to Laplace’s equation as shown by (15) and (16) of the main text, and
can be written from (A1) as

Zon o 7 o, o,
axz 6y oz 8yz ay oz (AIO)
2 oA '
+ 2% %y
0z° oy oz
which can be rearranged to give
0 BZAZ 0’4, 62A2
— o2 t——=t o2 )
%y oy (A11)
0’4, 0°A, 04
=_8_( 2.V + zy + zy)
0z ox oy 0z
Using (A11) with (A9) and reducing produces
x 2 2
OE 054, T4 o4, (A12)

=— +
ooz &z o' 0k oz

) Placing (A7) into (A6) and taking the partial derivative with respect to z gives an expression that is
identical to (A12). Therefore, the choice of P; and P* given in (A7) and (A8) are consistent with (A4)

through (A6).

In this appendix, it has been shown that P~ exists such that VA, = Vx P*. In addition, the

expressions for the three Cartesian components of P* have been determined. Similarly, it can be
shown that P”and P~ exist such that VH,=VxP” and VH =VxP-*.

10
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